We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2,
author = {Peter Stollmann},
title = {A dual characterization of length spaces with application to Dirichlet metric spaces},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {221-233},
zbl = {1198.31005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2}
}
Peter Stollmann. A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Mathematica, Tome 196 (2010) pp. 221-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2/