We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2, author = {Peter Stollmann}, title = {A dual characterization of length spaces with application to Dirichlet metric spaces}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {221-233}, zbl = {1198.31005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2} }
Peter Stollmann. A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Mathematica, Tome 196 (2010) pp. 221-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-2/