Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations
Fabio Nicola
Studia Mathematica, Tome 196 (2010), p. 207-219 / Harvested from The Polish Digital Mathematics Library

We study Fourier integral operators of Hörmander’s type acting on the spaces Lp(d)comp, 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in Lp. We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on Lp(d)comp if the mapping xxΦ(x,η) is constant on the fibres, of codimension r, of an affine fibration.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285591
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-1,
     author = {Fabio Nicola},
     title = {Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {207-219},
     zbl = {1192.35196},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-1}
}
Fabio Nicola. Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations. Studia Mathematica, Tome 196 (2010) pp. 207-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-1/