Uniform convergence of the greedy algorithm with respect to the Walsh system
Martin Grigoryan
Studia Mathematica, Tome 196 (2010), p. 197-206 / Harvested from The Polish Digital Mathematics Library

For any 0 < ϵ < 1, p ≥ 1 and each function fLp[0,1] one can find a function gL[0,1) with mesx ∈ [0,1): g ≠ f < ϵ such that its greedy algorithm with respect to the Walsh system converges uniformly on [0,1) and the sequence |ck(g)|:kspec(g) is decreasing, where ck(g) is the sequence of Fourier coefficients of g with respect to the Walsh system.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285632
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-6,
     author = {Martin Grigoryan},
     title = {Uniform convergence of the greedy algorithm with respect to the Walsh system},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {197-206},
     zbl = {1203.42046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-6}
}
Martin Grigoryan. Uniform convergence of the greedy algorithm with respect to the Walsh system. Studia Mathematica, Tome 196 (2010) pp. 197-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-6/