Considering functions f on ℝⁿ for which both f and f̂ are bounded by the Gaussian , 0 < a < 1, we show that their Fourier-Hermite coefficients have exponential decay. Optimal decay is obtained for O(n)-finite functions, thus extending a one-dimensional result of Vemuri.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5,
author = {Rahul Garg and Sundaram Thangavelu},
title = {On the Hermite expansions of functions from the Hardy class},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {177-195},
zbl = {1198.42029},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5}
}
Rahul Garg; Sundaram Thangavelu. On the Hermite expansions of functions from the Hardy class. Studia Mathematica, Tome 196 (2010) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5/