Considering functions f on ℝⁿ for which both f and f̂ are bounded by the Gaussian , 0 < a < 1, we show that their Fourier-Hermite coefficients have exponential decay. Optimal decay is obtained for O(n)-finite functions, thus extending a one-dimensional result of Vemuri.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5, author = {Rahul Garg and Sundaram Thangavelu}, title = {On the Hermite expansions of functions from the Hardy class}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {177-195}, zbl = {1198.42029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5} }
Rahul Garg; Sundaram Thangavelu. On the Hermite expansions of functions from the Hardy class. Studia Mathematica, Tome 196 (2010) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-5/