We study the spaces where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, is either isomorphic to l₁ or to . Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4, author = {Anahit Harutyunyan and Wolfgang Lusky}, title = {On L1-subspaces of holomorphic functions}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {157-175}, zbl = {1201.46026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4} }
Anahit Harutyunyan; Wolfgang Lusky. On L₁-subspaces of holomorphic functions. Studia Mathematica, Tome 196 (2010) pp. 157-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4/