We study the spaces where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, is either isomorphic to l₁ or to . Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4,
author = {Anahit Harutyunyan and Wolfgang Lusky},
title = {On L1-subspaces of holomorphic functions},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {157-175},
zbl = {1201.46026},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4}
}
Anahit Harutyunyan; Wolfgang Lusky. On L₁-subspaces of holomorphic functions. Studia Mathematica, Tome 196 (2010) pp. 157-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-2-4/