The continuity of pseudo-differential operators on weighted local Hardy spaces
Ming-Yi Lee ; Chin-Cheng Lin ; Ying-Chieh Lin
Studia Mathematica, Tome 196 (2010), p. 69-77 / Harvested from The Polish Digital Mathematics Library

We first show that a linear operator which is bounded on L²w with w ∈ A₁ can be extended to a bounded operator on the weighted local Hardy space h¹w if and only if this operator is uniformly bounded on all h¹w-atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to h¹w.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285669
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-1-4,
     author = {Ming-Yi Lee and Chin-Cheng Lin and Ying-Chieh Lin},
     title = {The continuity of pseudo-differential operators on weighted local Hardy spaces},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {69-77},
     zbl = {1194.42022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-1-4}
}
Ming-Yi Lee; Chin-Cheng Lin; Ying-Chieh Lin. The continuity of pseudo-differential operators on weighted local Hardy spaces. Studia Mathematica, Tome 196 (2010) pp. 69-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-1-4/