The joint essential numerical range, compact perturbations, and the Olsen problem
Vladimír Müller
Studia Mathematica, Tome 196 (2010), p. 275-290 / Harvested from The Polish Digital Mathematics Library

Let T₁,...,Tₙ be bounded linear operators on a complex Hilbert space H. Then there are compact operators K₁,...,Kₙ ∈ B(H) such that the closure of the joint numerical range of the n-tuple (T₁-K₁,...,Tₙ-Kₙ) equals the joint essential numerical range of (T₁,...,Tₙ). This generalizes the corresponding result for n = 1. We also show that if S ∈ B(H) and n ∈ ℕ then there exists a compact operator K ∈ B(H) such that ||(S-K)||=||S||e. This generalizes results of C. L. Olsen.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285408
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-3-5,
     author = {Vladim\'\i r M\"uller},
     title = {The joint essential numerical range, compact perturbations, and the Olsen problem},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {275-290},
     zbl = {1193.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-3-5}
}
Vladimír Müller. The joint essential numerical range, compact perturbations, and the Olsen problem. Studia Mathematica, Tome 196 (2010) pp. 275-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-3-5/