Let A be a complex commutative Banach algebra with unit 1 and δ > 0. A linear map ϕ: A → ℂ is said to be δ-almost multiplicative if |ϕ(ab) - ϕ(a)ϕ(b)| ≤ δ||a|| ||b|| for all a,b ∈ A. Let 0 < ϵ < 1. The ϵ-condition spectrum of an element a in A is defined by with the convention that when λ - a is not invertible. We prove the following results connecting these two notions: (1) If ϕ(1) = 1 and ϕ is δ-almost multiplicative, then for all a in A. (2) If ϕ is linear and for all a in A, then ϕ is δ-almost multiplicative for some δ. The first result is analogous to the Gelfand theory and the last result is analogous to the classical Gleason-Kahane-Żelazko theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8, author = {S. H. Kulkarni and D. Sukumar}, title = {Almost multiplicative functions on commutative Banach algebras}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {93-99}, zbl = {1200.46045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8} }
S. H. Kulkarni; D. Sukumar. Almost multiplicative functions on commutative Banach algebras. Studia Mathematica, Tome 196 (2010) pp. 93-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8/