Almost multiplicative functions on commutative Banach algebras
S. H. Kulkarni ; D. Sukumar
Studia Mathematica, Tome 196 (2010), p. 93-99 / Harvested from The Polish Digital Mathematics Library

Let A be a complex commutative Banach algebra with unit 1 and δ > 0. A linear map ϕ: A → ℂ is said to be δ-almost multiplicative if |ϕ(ab) - ϕ(a)ϕ(b)| ≤ δ||a|| ||b|| for all a,b ∈ A. Let 0 < ϵ < 1. The ϵ-condition spectrum of an element a in A is defined by σϵ(a):=λ:||λ-a||||(λ-a)-1||1/ϵ with the convention that ||λ-a||||(λ-a)-1||= when λ - a is not invertible. We prove the following results connecting these two notions: (1) If ϕ(1) = 1 and ϕ is δ-almost multiplicative, then ϕ(a)σδ(a) for all a in A. (2) If ϕ is linear and ϕ(a)σϵ(a) for all a in A, then ϕ is δ-almost multiplicative for some δ. The first result is analogous to the Gelfand theory and the last result is analogous to the classical Gleason-Kahane-Żelazko theorem.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285812
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8,
     author = {S. H. Kulkarni and D. Sukumar},
     title = {Almost multiplicative functions on commutative Banach algebras},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {93-99},
     zbl = {1200.46045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8}
}
S. H. Kulkarni; D. Sukumar. Almost multiplicative functions on commutative Banach algebras. Studia Mathematica, Tome 196 (2010) pp. 93-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm197-1-8/