The one-sided ergodic Hilbert transform in Banach spaces
Guy Cohen ; Christophe Cuny ; Michael Lin
Studia Mathematica, Tome 196 (2010), p. 251-263 / Harvested from The Polish Digital Mathematics Library

Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform limnk=1n(Tkx)/k. We prove that weak and strong convergence are equivalent, and in a reflexive space also supn||k=1n(Tkx)/k||< is equivalent to the convergence. We also show that -k=1(Tk)/k (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup (I-T)|(I-T)X¯r.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285703
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3,
     author = {Guy Cohen and Christophe Cuny and Michael Lin},
     title = {The one-sided ergodic Hilbert transform in Banach spaces},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {251-263},
     zbl = {1193.47018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3}
}
Guy Cohen; Christophe Cuny; Michael Lin. The one-sided ergodic Hilbert transform in Banach spaces. Studia Mathematica, Tome 196 (2010) pp. 251-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3/