Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform . We prove that weak and strong convergence are equivalent, and in a reflexive space also is equivalent to the convergence. We also show that (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3, author = {Guy Cohen and Christophe Cuny and Michael Lin}, title = {The one-sided ergodic Hilbert transform in Banach spaces}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {251-263}, zbl = {1193.47018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3} }
Guy Cohen; Christophe Cuny; Michael Lin. The one-sided ergodic Hilbert transform in Banach spaces. Studia Mathematica, Tome 196 (2010) pp. 251-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-3-3/