Equivalence of measures of smoothness in Lp(Sd-1), 1 < p < ∞
F. Dai ; Z. Ditzian ; Hongwei Huang
Studia Mathematica, Tome 196 (2010), p. 179-205 / Harvested from The Polish Digital Mathematics Library

Suppose Δ̃ is the Laplace-Beltrami operator on the sphere Sd-1,Δρkf(x)=ΔρΔρk-1f(x) and Δρf(x)=f(ρx)-f(x) where ρ ∈ SO(d). Then ωm(f,t)Lp(Sd-1)supΔρmfLp(Sd-1):ρSO(d),maxxSd-1ρx·xcost and K̃(f,tm)pinff-gLp(Sd-1)+tm(-Δ̃)m/2gLp(Sd-1):g((-Δ̃)m/2) are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for Lp(Sd-1) given in this paper plays a significant role in the proof.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285537
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-2-5,
     author = {F. Dai and Z. Ditzian and Hongwei Huang},
     title = {Equivalence of measures of smoothness in $L\_{p}(S^{d-1})$, 1 < p < $\infty$},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {179-205},
     zbl = {1230.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-2-5}
}
F. Dai; Z. Ditzian; Hongwei Huang. Equivalence of measures of smoothness in $L_{p}(S^{d-1})$, 1 < p < ∞. Studia Mathematica, Tome 196 (2010) pp. 179-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-2-5/