Schauder bases and the bounded approximation property in separable Banach spaces
Jorge Mujica ; Daniela M. Vieira
Studia Mathematica, Tome 196 (2010), p. 1-12 / Harvested from The Polish Digital Mathematics Library

Let E be a separable Banach space with the λ-bounded approximation property. We show that for each ϵ > 0 there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of F and, moreover, the sequence (Tₙ) of canonical projections in F has the properties supn||T||λ+ϵ and limsupn||T||λ. This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:284847
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-1-1,
     author = {Jorge Mujica and Daniela M. Vieira},
     title = {Schauder bases and the bounded approximation property in separable Banach spaces},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {1-12},
     zbl = {1201.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-1-1}
}
Jorge Mujica; Daniela M. Vieira. Schauder bases and the bounded approximation property in separable Banach spaces. Studia Mathematica, Tome 196 (2010) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm196-1-1/