Let ε > 0 and 1 ≤ k ≤ n and let be affine subspaces of ℝⁿ, each of dimension at most k. Let if ε < 1, and m = O(k + log p/log(1 + ε)) if ε ≥ 1. We prove that there is a linear map such that for all 1 ≤ l ≤ p and we have ||x-y||₂ ≤ ||H(x)-H(y)||₂ ≤ (1+ε)||x-y||₂, i.e. the distance distortion is at most 1 + ε. The estimate on m is tight in terms of k and p whenever ε < 1, and is tight on ε,k,p whenever ε ≥ 1. We extend these results to embeddings into general normed spaces Y.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3, author = {Alon Dmitriyuk and Yehoram Gordon}, title = {Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {227-241}, zbl = {1192.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3} }
Alon Dmitriyuk; Yehoram Gordon. Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces. Studia Mathematica, Tome 192 (2009) pp. 227-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3/