Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces
Alon Dmitriyuk ; Yehoram Gordon
Studia Mathematica, Tome 192 (2009), p. 227-241 / Harvested from The Polish Digital Mathematics Library

Let ε > 0 and 1 ≤ k ≤ n and let Wll=1p be affine subspaces of ℝⁿ, each of dimension at most k. Let m=O(ε-2(k+logp)) if ε < 1, and m = O(k + log p/log(1 + ε)) if ε ≥ 1. We prove that there is a linear map H:m such that for all 1 ≤ l ≤ p and x,yWl we have ||x-y||₂ ≤ ||H(x)-H(y)||₂ ≤ (1+ε)||x-y||₂, i.e. the distance distortion is at most 1 + ε. The estimate on m is tight in terms of k and p whenever ε < 1, and is tight on ε,k,p whenever ε ≥ 1. We extend these results to embeddings into general normed spaces Y.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:285147
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3,
     author = {Alon Dmitriyuk and Yehoram Gordon},
     title = {Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {227-241},
     zbl = {1192.46012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3}
}
Alon Dmitriyuk; Yehoram Gordon. Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces. Studia Mathematica, Tome 192 (2009) pp. 227-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-3/