On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution
A. Pajor ; L. Pastur
Studia Mathematica, Tome 192 (2009), p. 11-29 / Harvested from The Polish Digital Mathematics Library

We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix H(0) and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H(0) and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges weakly in probability to the non-random limit, found by Marchenko and Pastur.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284873
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-1-2,
     author = {A. Pajor and L. Pastur},
     title = {On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {11-29},
     zbl = {1178.15023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-1-2}
}
A. Pajor; L. Pastur. On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution. Studia Mathematica, Tome 192 (2009) pp. 11-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-1-2/