Isometries between groups of invertible elements in Banach algebras
Osamu Hatori
Studia Mathematica, Tome 192 (2009), p. 293-304 / Harvested from The Polish Digital Mathematics Library

We show that if T is an isometry (as metric spaces) from an open subgroup of the group of invertible elements in a unital semisimple commutative Banach algebra A onto a open subgroup of the group of invertible elements in a unital Banach algebra B, then T(1)-1T is an isometrical group isomorphism. In particular, T(1)-1T extends to an isometrical real algebra isomorphism from A onto B.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284709
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-3-5,
     author = {Osamu Hatori},
     title = {Isometries between groups of invertible elements in Banach algebras},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {293-304},
     zbl = {1190.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-3-5}
}
Osamu Hatori. Isometries between groups of invertible elements in Banach algebras. Studia Mathematica, Tome 192 (2009) pp. 293-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-3-5/