It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space to . This implies the almost everywhere convergence of the Fejér means in a cone for all , which is larger than .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-5,
author = {Ferenc Weisz},
title = {Multi-dimensional Fej\'er summability and local Hardy spaces},
journal = {Studia Mathematica},
volume = {192},
year = {2009},
pages = {181-195},
zbl = {1180.42007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-5}
}
Ferenc Weisz. Multi-dimensional Fejér summability and local Hardy spaces. Studia Mathematica, Tome 192 (2009) pp. 181-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-5/