Local spectrum and local spectral radius of an operator at a fixed vector
Janko Bračič ; Vladimír Müller
Studia Mathematica, Tome 192 (2009), p. 155-162 / Harvested from The Polish Digital Mathematics Library

Let be a complex Banach space and e ∈ a nonzero vector. Then the set of all operators T ∈ ℒ() with σT(e)=σδ(T), respectively rT(e)=r(T), is residual. This is an analogy to the well known result for a fixed operator and variable vector. The results are then used to characterize linear mappings preserving the local spectrum (or local spectral radius) at a fixed vector e.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:286117
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3,
     author = {Janko Bra\v ci\v c and Vladim\'\i r M\"uller},
     title = {Local spectrum and local spectral radius of an operator at a fixed vector},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {155-162},
     zbl = {1182.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3}
}
Janko Bračič; Vladimír Müller. Local spectrum and local spectral radius of an operator at a fixed vector. Studia Mathematica, Tome 192 (2009) pp. 155-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3/