Let be a complex Banach space and e ∈ a nonzero vector. Then the set of all operators T ∈ ℒ() with , respectively , is residual. This is an analogy to the well known result for a fixed operator and variable vector. The results are then used to characterize linear mappings preserving the local spectrum (or local spectral radius) at a fixed vector e.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3, author = {Janko Bra\v ci\v c and Vladim\'\i r M\"uller}, title = {Local spectrum and local spectral radius of an operator at a fixed vector}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {155-162}, zbl = {1182.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3} }
Janko Bračič; Vladimír Müller. Local spectrum and local spectral radius of an operator at a fixed vector. Studia Mathematica, Tome 192 (2009) pp. 155-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-2-3/