Transferring Lp eigenfunction bounds from S2n+1 to hⁿ
Valentina Casarino ; Paolo Ciatti
Studia Mathematica, Tome 192 (2009), p. 23-42 / Harvested from The Polish Digital Mathematics Library

By using the notion of contraction of Lie groups, we transfer Lp-L² estimates for joint spectral projectors from the unit complex sphere S2n+1 in n+1 to the reduced Heisenberg group hⁿ. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on hⁿ. As a consequence, we prove, in the spirit of Sogge’s work, a discrete restriction theorem for the sub-Laplacian L on hⁿ.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284497
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-1-2,
     author = {Valentina Casarino and Paolo Ciatti},
     title = {Transferring $L^{p}$ eigenfunction bounds from $S^{2n+1}$ to hn},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {23-42},
     zbl = {1178.43005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-1-2}
}
Valentina Casarino; Paolo Ciatti. Transferring $L^{p}$ eigenfunction bounds from $S^{2n+1}$ to hⁿ. Studia Mathematica, Tome 192 (2009) pp. 23-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm194-1-2/