Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces
Sergei V. Astashkin ; Francisco L. Hernández ; Evgeni M. Semenov
Studia Mathematica, Tome 192 (2009), p. 269-283 / Harvested from The Polish Digital Mathematics Library

If G is the closure of L in exp L₂, it is proved that the inclusion between rearrangement invariant spaces E ⊂ F is strictly singular if and only if it is disjointly strictly singular and E ⊊ G. For any Marcinkiewicz space M(φ) ⊂ G such that M(φ) is not an interpolation space between L and G it is proved that there exists another Marcinkiewicz space M(ψ) ⊊ M(φ) with the property that the M(ψ) and M(φ) norms are equivalent on the Rademacher subspace. Applications are given and a question of Milman answered.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:285103
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-4,
     author = {Sergei V. Astashkin and Francisco L. Hern\'andez and Evgeni M. Semenov},
     title = {Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {269-283},
     zbl = {1185.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-4}
}
Sergei V. Astashkin; Francisco L. Hernández; Evgeni M. Semenov. Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces. Studia Mathematica, Tome 192 (2009) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-4/