On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis
Piotr Biler ; Lorenzo Brandolese
Studia Mathematica, Tome 192 (2009), p. 241-261 / Harvested from The Polish Digital Mathematics Library

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284649
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-2,
     author = {Piotr Biler and Lorenzo Brandolese},
     title = {On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {241-261},
     zbl = {1167.35316},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-2}
}
Piotr Biler; Lorenzo Brandolese. On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis. Studia Mathematica, Tome 192 (2009) pp. 241-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-2/