On the uniform convergence of double sine series
Péter Kórus ; Ferenc Móricz
Studia Mathematica, Tome 192 (2009), p. 79-97 / Harvested from The Polish Digital Mathematics Library

Let a single sine series (*) k=1aksinkx be given with nonnegative coefficients ak. If ak is a “mean value bounded variation sequence” (briefly, MVBVS), then a necessary and sufficient condition for the uniform convergence of series (*) is that kak0 as k → ∞. The class MVBVS includes all sequences monotonically decreasing to zero. These results are due to S. P. Zhou, P. Zhou and D. S. Yu. In this paper we extend them from single to double sine series (**) k=1l=1cklsinkxsinly, even with complex coefficients ckl. We also give a uniform boundedness test for the rectangular partial sums of series (**), and slightly improve the results on single sine series.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:286433
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-1-4,
     author = {P\'eter K\'orus and Ferenc M\'oricz},
     title = {On the uniform convergence of double sine series},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {79-97},
     zbl = {1167.42002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-1-4}
}
Péter Kórus; Ferenc Móricz. On the uniform convergence of double sine series. Studia Mathematica, Tome 192 (2009) pp. 79-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-1-4/