We prove some extrapolation results for operators bounded on radial functions with p ∈ (p₀,p₁) and deduce some endpoint estimates. We apply our results to prove the almost everywhere convergence of the spherical partial Fourier integrals and to obtain estimates on maximal Bochner-Riesz type operators acting on radial functions in several weighted spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm192-2-5, author = {Mar\'\i a J. Carro and Elena Prestini}, title = {Convergence a.e. of spherical partial Fourier integrals on weighted spaces for radial functions: endpoint estimates}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {173-194}, zbl = {1161.42302}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm192-2-5} }
María J. Carro; Elena Prestini. Convergence a.e. of spherical partial Fourier integrals on weighted spaces for radial functions: endpoint estimates. Studia Mathematica, Tome 192 (2009) pp. 173-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm192-2-5/