Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg
Hong-Quan Li
Studia Mathematica, Tome 192 (2009), p. 89-100 / Harvested from The Polish Digital Mathematics Library

By getting uniformly asymptotic estimates for the Poisson kernel on Heisenberg groups 2n+1, we prove that there exists a constant A > 0, independent of n ∈ ℕ*, such that for all fL¹(2n+1), we have ||Mf||L1,An||f||, where M denotes the centered Hardy-Littlewood maximal function defined by the Carnot-Carathéodory distance or by the Korányi norm.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:285304
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7,
     author = {Hong-Quan Li},
     title = {Fonctions maximales centr\'ees de Hardy-Littlewood sur les groupes de Heisenberg},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {89-100},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7}
}
Hong-Quan Li. Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg. Studia Mathematica, Tome 192 (2009) pp. 89-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7/