By getting uniformly asymptotic estimates for the Poisson kernel on Heisenberg groups , we prove that there exists a constant A > 0, independent of n ∈ ℕ*, such that for all , we have , where M denotes the centered Hardy-Littlewood maximal function defined by the Carnot-Carathéodory distance or by the Korányi norm.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7, author = {Hong-Quan Li}, title = {Fonctions maximales centr\'ees de Hardy-Littlewood sur les groupes de Heisenberg}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {89-100}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7} }
Hong-Quan Li. Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg. Studia Mathematica, Tome 192 (2009) pp. 89-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-7/