A theorem of Gel'fand-Mazur type
Hung Le Pham
Studia Mathematica, Tome 192 (2009), p. 81-88 / Harvested from The Polish Digital Mathematics Library

Denote by any set of cardinality continuum. It is proved that a Banach algebra A with the property that for every collection aα:αA there exist α ≠ β ∈ such that aαaβA is isomorphic to i=1r([X]/Xdi[X])E, where d,...,dr, and E is either X[X]/Xd[X] for some d₀ ∈ ℕ or a 1-dimensional i=1r[X]/Xdi[X]-bimodule with trivial right module action. In particular, ℂ is the unique non-zero prime Banach algebra satisfying the above condition.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284875
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6,
     author = {Hung Le Pham},
     title = {A theorem of Gel'fand-Mazur type},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {81-88},
     zbl = {1176.46045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6}
}
Hung Le Pham. A theorem of Gel'fand-Mazur type. Studia Mathematica, Tome 192 (2009) pp. 81-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6/