Denote by any set of cardinality continuum. It is proved that a Banach algebra A with the property that for every collection there exist α ≠ β ∈ such that is isomorphic to , where , and E is either for some d₀ ∈ ℕ or a 1-dimensional -bimodule with trivial right module action. In particular, ℂ is the unique non-zero prime Banach algebra satisfying the above condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6, author = {Hung Le Pham}, title = {A theorem of Gel'fand-Mazur type}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {81-88}, zbl = {1176.46045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6} }
Hung Le Pham. A theorem of Gel'fand-Mazur type. Studia Mathematica, Tome 192 (2009) pp. 81-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-6/