We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3, author = {Narcisse Randrianantoanina}, title = {Non-commutative martingale VMO-spaces}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {39-55}, zbl = {1175.46007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3} }
Narcisse Randrianantoanina. Non-commutative martingale VMO-spaces. Studia Mathematica, Tome 192 (2009) pp. 39-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3/