We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3,
author = {Narcisse Randrianantoanina},
title = {Non-commutative martingale VMO-spaces},
journal = {Studia Mathematica},
volume = {192},
year = {2009},
pages = {39-55},
zbl = {1175.46007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3}
}
Narcisse Randrianantoanina. Non-commutative martingale VMO-spaces. Studia Mathematica, Tome 192 (2009) pp. 39-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3/