Non-commutative martingale VMO-spaces
Narcisse Randrianantoanina
Studia Mathematica, Tome 192 (2009), p. 39-55 / Harvested from The Polish Digital Mathematics Library

We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:286331
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3,
     author = {Narcisse Randrianantoanina},
     title = {Non-commutative martingale VMO-spaces},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {39-55},
     zbl = {1175.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3}
}
Narcisse Randrianantoanina. Non-commutative martingale VMO-spaces. Studia Mathematica, Tome 192 (2009) pp. 39-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-1-3/