Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms
Liguang Liu ; Dachun Yang
Studia Mathematica, Tome 192 (2009), p. 163-183 / Harvested from The Polish Digital Mathematics Library

Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space p,qs() to a quasi-Banach space ℬ if and only if sup||T(a)||: a is an infinitely differentiable (p,q,s)-atom of p,qs() < ∞, where the (p,q,s)-atom of p,qs() is as defined by Han, Paluszyński and Weiss.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:286542
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5,
     author = {Liguang Liu and Dachun Yang},
     title = {Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {163-183},
     zbl = {1169.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5}
}
Liguang Liu; Dachun Yang. Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms. Studia Mathematica, Tome 192 (2009) pp. 163-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5/