Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space to a quasi-Banach space ℬ if and only if sup: a is an infinitely differentiable (p,q,s)-atom of < ∞, where the (p,q,s)-atom of is as defined by Han, Paluszyński and Weiss.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5, author = {Liguang Liu and Dachun Yang}, title = {Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {163-183}, zbl = {1169.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5} }
Liguang Liu; Dachun Yang. Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms. Studia Mathematica, Tome 192 (2009) pp. 163-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-5/