Let 𝓐 be a unital separable simple nuclear C*-algebra such that ℳ (𝓐 ⊗ 𝓚) has real rank zero. Suppose that ℂ is a separable simple liftable and purely large unital C*-subalgebra of ℳ (𝓐 ⊗ 𝓚)/ (𝓐 ⊗ 𝓚). Then the relative double commutant of ℂ in ℳ (𝓐 ⊗ 𝓚)/(𝓐 ⊗ 𝓚) is equal to ℂ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-3, author = {P. W. Ng}, title = {A double commutant theorem for purely large C*-subalgebras of real rank zero corona algebras}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {135-145}, zbl = {1170.46054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-3} }
P. W. Ng. A double commutant theorem for purely large C*-subalgebras of real rank zero corona algebras. Studia Mathematica, Tome 192 (2009) pp. 135-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-2-3/