Asymptotic behaviour of averages of k-dimensional marginals of measures on ℝⁿ
Jesús Bastero ; Julio Bernués
Studia Mathematica, Tome 192 (2009), p. 1-31 / Harvested from The Polish Digital Mathematics Library

We study the asymptotic behaviour, as n → ∞, of the Lebesgue measure of the set xK:|PE(x)|t for a random k-dimensional subspace E ⊂ ℝⁿ and an isotropic convex body K ⊂ ℝⁿ. For k growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in k of a t-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on ℝⁿ.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:285088
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1,
     author = {Jes\'us Bastero and Julio Bernu\'es},
     title = {Asymptotic behaviour of averages of k-dimensional marginals of measures on Rn},
     journal = {Studia Mathematica},
     volume = {192},
     year = {2009},
     pages = {1-31},
     zbl = {1157.60011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1}
}
Jesús Bastero; Julio Bernués. Asymptotic behaviour of averages of k-dimensional marginals of measures on ℝⁿ. Studia Mathematica, Tome 192 (2009) pp. 1-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1/