We study the asymptotic behaviour, as n → ∞, of the Lebesgue measure of the set for a random k-dimensional subspace E ⊂ ℝⁿ and an isotropic convex body K ⊂ ℝⁿ. For k growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in of a t-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on ℝⁿ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1, author = {Jes\'us Bastero and Julio Bernu\'es}, title = {Asymptotic behaviour of averages of k-dimensional marginals of measures on Rn}, journal = {Studia Mathematica}, volume = {192}, year = {2009}, pages = {1-31}, zbl = {1157.60011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1} }
Jesús Bastero; Julio Bernués. Asymptotic behaviour of averages of k-dimensional marginals of measures on ℝⁿ. Studia Mathematica, Tome 192 (2009) pp. 1-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1/