We study the asymptotic behaviour, as n → ∞, of the Lebesgue measure of the set for a random k-dimensional subspace E ⊂ ℝⁿ and an isotropic convex body K ⊂ ℝⁿ. For k growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in of a t-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on ℝⁿ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1,
author = {Jes\'us Bastero and Julio Bernu\'es},
title = {Asymptotic behaviour of averages of k-dimensional marginals of measures on Rn},
journal = {Studia Mathematica},
volume = {192},
year = {2009},
pages = {1-31},
zbl = {1157.60011},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1}
}
Jesús Bastero; Julio Bernués. Asymptotic behaviour of averages of k-dimensional marginals of measures on ℝⁿ. Studia Mathematica, Tome 192 (2009) pp. 1-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm190-1-1/