We show that the effective diffusivity of a random diffusion with a drift is a continuous function of the drift coefficient. In fact, in the case of a homogeneous and isotropic random environment the function is smooth outside the origin. We provide a one-dimensional example which shows that the diffusivity coefficient need not be differentiable at 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5, author = {M. Cudna and T. Komorowski}, title = {Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {269-286}, zbl = {1165.60034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5} }
M. Cudna; T. Komorowski. Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient. Studia Mathematica, Tome 187 (2008) pp. 269-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5/