We show that the effective diffusivity of a random diffusion with a drift is a continuous function of the drift coefficient. In fact, in the case of a homogeneous and isotropic random environment the function is smooth outside the origin. We provide a one-dimensional example which shows that the diffusivity coefficient need not be differentiable at 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5,
author = {M. Cudna and T. Komorowski},
title = {Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient},
journal = {Studia Mathematica},
volume = {187},
year = {2008},
pages = {269-286},
zbl = {1165.60034},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5}
}
M. Cudna; T. Komorowski. Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient. Studia Mathematica, Tome 187 (2008) pp. 269-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-5/