Time-dependent Schrödinger perturbations of transition densities
Krzysztof Bogdan ; Wolfhard Hansen ; Tomasz Jakubowski
Studia Mathematica, Tome 187 (2008), p. 235-254 / Harvested from The Polish Digital Mathematics Library

We construct the fundamental solution of t-Δy-q(t,y) for functions q with a certain integral space-time relative smallness, in particular for those satisfying a relative Kato condition. The resulting transition density is comparable to the Gaussian kernel in finite time, and it is even asymptotically equal to the Gaussian kernel (in small time) under the relative Kato condition. The result is generalized to arbitrary strictly positive and finite time-nonhomogeneous transition densities on measure spaces. We also discuss specific applications to Schrödinger perturbations of the fractional Laplacian in view of the fact that the 3P Theorem holds for the fundamental solution corresponding to the operator.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:285325
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-3,
     author = {Krzysztof Bogdan and Wolfhard Hansen and Tomasz Jakubowski},
     title = {Time-dependent Schr\"odinger perturbations of transition densities},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {235-254},
     zbl = {1161.47009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-3}
}
Krzysztof Bogdan; Wolfhard Hansen; Tomasz Jakubowski. Time-dependent Schrödinger perturbations of transition densities. Studia Mathematica, Tome 187 (2008) pp. 235-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-3-3/