We prove three theorems on linear operators induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for to be continuous for 0 < p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6,
author = {Krzysztof Smela},
title = {Continuous rearrangements of the Haar system in $H\_{p}$ for 0 < p < $\infty$},
journal = {Studia Mathematica},
volume = {187},
year = {2008},
pages = {189-199},
zbl = {1169.42013},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6}
}
Krzysztof Smela. Continuous rearrangements of the Haar system in $H_{p}$ for 0 < p < ∞. Studia Mathematica, Tome 187 (2008) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6/