We prove three theorems on linear operators induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for to be continuous for 0 < p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6, author = {Krzysztof Smela}, title = {Continuous rearrangements of the Haar system in $H\_{p}$ for 0 < p < $\infty$}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {189-199}, zbl = {1169.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6} }
Krzysztof Smela. Continuous rearrangements of the Haar system in $H_{p}$ for 0 < p < ∞. Studia Mathematica, Tome 187 (2008) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-2-6/