We show that an infinite-dimensional complete linear space X has: ∙ a dense hereditarily Baire Hamel basis if |X| ≤ ⁺; ∙ a dense non-meager Hamel basis if for some cardinal κ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3,
author = {Taras Banakh and Mirna D\v zamonja and Lorenz Halbeisen},
title = {Non-separable Banach spaces with non-meager Hamel basis},
journal = {Studia Mathematica},
volume = {187},
year = {2008},
pages = {27-34},
zbl = {1167.46015},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3}
}
Taras Banakh; Mirna Džamonja; Lorenz Halbeisen. Non-separable Banach spaces with non-meager Hamel basis. Studia Mathematica, Tome 187 (2008) pp. 27-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3/