We show that an infinite-dimensional complete linear space X has: ∙ a dense hereditarily Baire Hamel basis if |X| ≤ ⁺; ∙ a dense non-meager Hamel basis if for some cardinal κ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3, author = {Taras Banakh and Mirna D\v zamonja and Lorenz Halbeisen}, title = {Non-separable Banach spaces with non-meager Hamel basis}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {27-34}, zbl = {1167.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3} }
Taras Banakh; Mirna Džamonja; Lorenz Halbeisen. Non-separable Banach spaces with non-meager Hamel basis. Studia Mathematica, Tome 187 (2008) pp. 27-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm189-1-3/