We show that if X is an infinite-dimensional Banach space in which every finite-dimensional subspace is λ-complemented with λ ≤ 2 then X is (1 + C√(λ-1))-isomorphic to a Hilbert space, where C is an absolute constant; this estimate (up to the constant C) is best possible. This answers a question of Kadets and Mityagin from 1973. We also investigate the finite-dimensional versions of the theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-3-2, author = {N. J. Kalton}, title = {The complemented subspace problem revisited}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {223-257}, zbl = {1162.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-3-2} }
N. J. Kalton. The complemented subspace problem revisited. Studia Mathematica, Tome 187 (2008) pp. 223-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-3-2/