We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set 𝓐, in the Effros-Borel space of subspaces of C[0,1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y, with a Schauder basis, that contains isomorphic copies of every space X in the class 𝓐.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5, author = {Pandelis Dodos and Jordi Lopez-Abad}, title = {On unconditionally saturated Banach spaces}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {175-191}, zbl = {1165.46002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5} }
Pandelis Dodos; Jordi Lopez-Abad. On unconditionally saturated Banach spaces. Studia Mathematica, Tome 187 (2008) pp. 175-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5/