On unconditionally saturated Banach spaces
Pandelis Dodos ; Jordi Lopez-Abad
Studia Mathematica, Tome 187 (2008), p. 175-191 / Harvested from The Polish Digital Mathematics Library

We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set 𝓐, in the Effros-Borel space of subspaces of C[0,1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y, with a Schauder basis, that contains isomorphic copies of every space X in the class 𝓐.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284466
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5,
     author = {Pandelis Dodos and Jordi Lopez-Abad},
     title = {On unconditionally saturated Banach spaces},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {175-191},
     zbl = {1165.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5}
}
Pandelis Dodos; Jordi Lopez-Abad. On unconditionally saturated Banach spaces. Studia Mathematica, Tome 187 (2008) pp. 175-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-5/