The maximal theorem for weighted grand Lebesgue spaces
Alberto Fiorenza ; Babita Gupta ; Pankaj Jain
Studia Mathematica, Tome 187 (2008), p. 123-133 / Harvested from The Polish Digital Mathematics Library

We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality ||Mf||p),wc||f||p),w holds with some c independent of f iff w belongs to the well known Muckenhoupt class Ap, and therefore iff ||Mf||p,wc||f||p,w for some c independent of f. Some results of similar type are discussed for the case of small Lebesgue spaces.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:285100
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-2,
     author = {Alberto Fiorenza and Babita Gupta and Pankaj Jain},
     title = {The maximal theorem for weighted grand Lebesgue spaces},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {123-133},
     zbl = {1161.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-2}
}
Alberto Fiorenza; Babita Gupta; Pankaj Jain. The maximal theorem for weighted grand Lebesgue spaces. Studia Mathematica, Tome 187 (2008) pp. 123-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-2-2/