Linear maps on Mₙ(ℂ) preserving the local spectral radius
Abdellatif Bourhim ; Vivien G. Miller
Studia Mathematica, Tome 187 (2008), p. 67-75 / Harvested from The Polish Digital Mathematics Library

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ(T)=αATA-1 for all T ∈ Mₙ(ℂ).

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284753
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-4,
     author = {Abdellatif Bourhim and Vivien G. Miller},
     title = {Linear maps on Mn(C) preserving the local spectral radius},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {67-75},
     zbl = {1145.47005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-4}
}
Abdellatif Bourhim; Vivien G. Miller. Linear maps on Mₙ(ℂ) preserving the local spectral radius. Studia Mathematica, Tome 187 (2008) pp. 67-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-4/