On the perturbation functions and similarity orbits
Haïkel Skhiri
Studia Mathematica, Tome 187 (2008), p. 57-66 / Harvested from The Polish Digital Mathematics Library

We show that the essential spectral radius ϱe(T) of T ∈ B(H) can be calculated by the formula ϱe(T) = inf·(XTX-1): X an invertible operator, where ·(T) is a Φ₁-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if ·(T) is a Φ₂-perturbation function [loc. cit.] and if T is a Fredholm operator, then dist(0,σe(T)) = sup·(XTX-1): X an invertible operator.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:285201
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-3,
     author = {Ha\"\i kel Skhiri},
     title = {On the perturbation functions and similarity orbits},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {57-66},
     zbl = {1146.47008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-3}
}
Haïkel Skhiri. On the perturbation functions and similarity orbits. Studia Mathematica, Tome 187 (2008) pp. 57-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-3/