Minimality properties of Tsirelson type spaces
Denka Kutzarova ; Denny H. Leung ; Antonis Manoussakis ; Wee-Kee Tang
Studia Mathematica, Tome 187 (2008), p. 233-263 / Harvested from The Polish Digital Mathematics Library

We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis (ek) is said to be subsequentially minimal if for every normalized block basis (xk) of (ek), there is a further block basis (yk) of (xk) such that (yk) is equivalent to a subsequence of (ek). Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of mixed Tsirelson spaces fails to be subsequentially minimal in a strong sense.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284482
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-3-3,
     author = {Denka Kutzarova and Denny H. Leung and Antonis Manoussakis and Wee-Kee Tang},
     title = {Minimality properties of Tsirelson type spaces},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {233-263},
     zbl = {1160.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-3-3}
}
Denka Kutzarova; Denny H. Leung; Antonis Manoussakis; Wee-Kee Tang. Minimality properties of Tsirelson type spaces. Studia Mathematica, Tome 187 (2008) pp. 233-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-3-3/