Dirichlet series induced by the Riemann zeta-function
Jun-ichi Tanaka
Studia Mathematica, Tome 187 (2008), p. 157-184 / Harvested from The Polish Digital Mathematics Library

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω, the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form (ap,s)=p(1-app-s)-1 for ap in ω. Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284972
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4,
     author = {Jun-ichi Tanaka},
     title = {Dirichlet series induced by the Riemann zeta-function},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {157-184},
     zbl = {1209.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4}
}
Jun-ichi Tanaka. Dirichlet series induced by the Riemann zeta-function. Studia Mathematica, Tome 187 (2008) pp. 157-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4/