The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form for in . Among other things, using the Haar measure on for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4, author = {Jun-ichi Tanaka}, title = {Dirichlet series induced by the Riemann zeta-function}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {157-184}, zbl = {1209.43001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4} }
Jun-ichi Tanaka. Dirichlet series induced by the Riemann zeta-function. Studia Mathematica, Tome 187 (2008) pp. 157-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-2-4/