Isomorphisms of some reflexive algebras
Jiankui Li ; Zhidong Pan
Studia Mathematica, Tome 187 (2008), p. 95-100 / Harvested from The Polish Digital Mathematics Library

Suppose ℒ₁ and ℒ₂ are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from algℒ₁ to algℒ₂ is quasi-spatial; in particular, if a subspace lattice ℒ of a complex separable Banach space X contains a sequence Ei such that (Ei)X, EiEi+1, and i=1Ei=X then every automorphism of algℒ is quasi-spatial.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284681
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5,
     author = {Jiankui Li and Zhidong Pan},
     title = {Isomorphisms of some reflexive algebras},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {95-100},
     zbl = {1148.47051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5}
}
Jiankui Li; Zhidong Pan. Isomorphisms of some reflexive algebras. Studia Mathematica, Tome 187 (2008) pp. 95-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5/