Suppose ℒ₁ and ℒ₂ are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from algℒ₁ to algℒ₂ is quasi-spatial; in particular, if a subspace lattice ℒ of a complex separable Banach space X contains a sequence such that , , and then every automorphism of algℒ is quasi-spatial.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5, author = {Jiankui Li and Zhidong Pan}, title = {Isomorphisms of some reflexive algebras}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {95-100}, zbl = {1148.47051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5} }
Jiankui Li; Zhidong Pan. Isomorphisms of some reflexive algebras. Studia Mathematica, Tome 187 (2008) pp. 95-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-5/