Ascent spectrum and essential ascent spectrum
O. Bel Hadj Fredj ; M. Burgos ; M. Oudghiri
Studia Mathematica, Tome 187 (2008), p. 59-73 / Harvested from The Polish Digital Mathematics Library

We study the essential ascent and the related essential ascent spectrum of an operator on a Banach space. We show that a Banach space X has finite dimension if and only if the essential ascent of every operator on X is finite. We also focus on the stability of the essential ascent spectrum under perturbations, and we prove that an operator F on X has some finite rank power if and only if σasce(T+F)=σasce(T) for every operator T commuting with F. The quasi-nilpotent part, the analytic core and the single-valued extension property are also analyzed for operators with finite essential ascent.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284537
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-3,
     author = {O. Bel Hadj Fredj and M. Burgos and M. Oudghiri},
     title = {Ascent spectrum and essential ascent spectrum},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {59-73},
     zbl = {1160.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-3}
}
O. Bel Hadj Fredj; M. Burgos; M. Oudghiri. Ascent spectrum and essential ascent spectrum. Studia Mathematica, Tome 187 (2008) pp. 59-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm187-1-3/