On linear extension for interpolating sequences
Eric Amar
Studia Mathematica, Tome 187 (2008), p. 251-265 / Harvested from The Polish Digital Mathematics Library

Let A be a uniform algebra on X and σ a probability measure on X. We define the Hardy spaces Hp(σ) and the Hp(σ) interpolating sequences S in the p-spectrum p of σ. We prove, under some structural hypotheses on A and σ, that if S is a “dual bounded” Carleson sequence, then S is Hs(σ)-interpolating with a linear extension operator for s < p, provided that either p = ∞ or p ≤ 2. In the case of the unit ball of ℂⁿ we find, for instance, that if S is dual bounded in H() then S is Hp()-interpolating with a linear extension operator for any 1 ≤ p < ∞. Already in this case this is a new result.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284868
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-4,
     author = {Eric Amar},
     title = {On linear extension for interpolating sequences},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {251-265},
     zbl = {1206.42022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-4}
}
Eric Amar. On linear extension for interpolating sequences. Studia Mathematica, Tome 187 (2008) pp. 251-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-4/