Fredholm spectrum and growth of cohomology groups
Jörg Eschmeier
Studia Mathematica, Tome 187 (2008), p. 237-249 / Harvested from The Polish Digital Mathematics Library

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σF(T)=σ(T)σe(T) be the non-essential spectrum of T. We show that, for each connected component M of the manifold Reg(σF(T)) of all smooth points of σF(T), there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups Hp((z-T)k,E) grow at least like the sequence (kd)k1 with d = dim M.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284792
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3,
     author = {J\"org Eschmeier},
     title = {Fredholm spectrum and growth of cohomology groups},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {237-249},
     zbl = {1140.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3}
}
Jörg Eschmeier. Fredholm spectrum and growth of cohomology groups. Studia Mathematica, Tome 187 (2008) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3/