Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let be the non-essential spectrum of T. We show that, for each connected component M of the manifold of all smooth points of , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups grow at least like the sequence with d = dim M.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3, author = {J\"org Eschmeier}, title = {Fredholm spectrum and growth of cohomology groups}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {237-249}, zbl = {1140.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3} }
Jörg Eschmeier. Fredholm spectrum and growth of cohomology groups. Studia Mathematica, Tome 187 (2008) pp. 237-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-3-3/