The Littlewood-Paley theory is extended to weighted spaces of distributions on [-1,1] with Jacobi weights . Almost exponentially localized polynomial elements (needlets) , are constructed and, in complete analogy with the classical case on ℝⁿ, it is shown that weighted Triebel-Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients in respective sequence spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-2-3, author = {George Kyriazis and Pencho Petrushev and Yuan Xu}, title = {Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {161-202}, zbl = {1283.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-2-3} }
George Kyriazis; Pencho Petrushev; Yuan Xu. Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces. Studia Mathematica, Tome 187 (2008) pp. 161-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-2-3/