It is shown that if a Banach space X has the weak Banach-Saks property and the weak fixed point property for nonexpansive mappings and Y has the asymptotic (P) property (which is weaker than the condition WCS(Y) > 1), then X ⊕ Y endowed with a strictly monotone norm enjoys the weak fixed point property. The same conclusion is valid if X admits a 1-unconditional basis.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-8, author = {Stanis\l aw Prus and Andrzej Wi\'snicki}, title = {On the fixed point property in direct sums of Banach spaces with strictly monotone norms}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {87-99}, zbl = {1147.47038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-8} }
Stanisław Prus; Andrzej Wiśnicki. On the fixed point property in direct sums of Banach spaces with strictly monotone norms. Studia Mathematica, Tome 187 (2008) pp. 87-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-8/