Using topological uniform descent, we give necessary and sufficient conditions for Browder's theorem and Weyl's theorem to hold for an operator A. The two theorems are liable to fail for 2 × 2 operator matrices. In this paper, we explore how they survive for 2 × 2 operator matrices on a Hilbert space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-4, author = {Xiaohong Cao}, title = {Weyl type theorem for operator matrices}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {29-39}, zbl = {1143.47011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-4} }
Xiaohong Cao. Weyl type theorem for operator matrices. Studia Mathematica, Tome 187 (2008) pp. 29-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm186-1-4/