Ordered analytic Hilbert spaces over the unit disk
Shengzhao Hou ; Shuyun Wei
Studia Mathematica, Tome 187 (2008), p. 127-142 / Harvested from The Polish Digital Mathematics Library

Let f, g be in the analytic function ring Hol(𝔻) over the unit disk 𝔻. We say that f ⪯ g if there exist M > 0 and 0 < r < 1 such that |f(z)| ≤ M|g(z)| whenever r < |z| < 1. Let X be a Hilbert space contained in Hol(𝔻). Then X is called an ordered Hilbert space if f ⪯ g and g ∈ X imply f ∈ X. In this note, we mainly study the connection between an ordered analytic Hilbert space and its reproducing kernel. We also consider when an invariant subspace of the whole space X is similar to X.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:286215
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-2-2,
     author = {Shengzhao Hou and Shuyun Wei},
     title = {Ordered analytic Hilbert spaces over the unit disk},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {127-142},
     zbl = {1152.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-2-2}
}
Shengzhao Hou; Shuyun Wei. Ordered analytic Hilbert spaces over the unit disk. Studia Mathematica, Tome 187 (2008) pp. 127-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-2-2/