On operators from separable reflexive spaces with asymptotic structure
Bentuo Zheng
Studia Mathematica, Tome 187 (2008), p. 87-98 / Harvested from The Polish Digital Mathematics Library

Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower-q-tree estimate and let T be a bounded linear operator from X which satisfies an upper-p-tree estimate. Then T factors through a subspace of (F)r, where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an (p,q) FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic lower-q-tree estimate. Let T be a bounded linear operator from X which satisfies an asymptotic upper-p-tree estimate. Then T factors through a subspace of (G)r, where (Gₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an asymptotic (p,q) FDD.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:286583
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6,
     author = {Bentuo Zheng},
     title = {On operators from separable reflexive spaces with asymptotic structure},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {87-98},
     zbl = {1148.46010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6}
}
Bentuo Zheng. On operators from separable reflexive spaces with asymptotic structure. Studia Mathematica, Tome 187 (2008) pp. 87-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6/