Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower--tree estimate and let T be a bounded linear operator from X which satisfies an upper--tree estimate. Then T factors through a subspace of , where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic lower--tree estimate. Let T be a bounded linear operator from X which satisfies an asymptotic upper--tree estimate. Then T factors through a subspace of , where (Gₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an asymptotic FDD.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6, author = {Bentuo Zheng}, title = {On operators from separable reflexive spaces with asymptotic structure}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {87-98}, zbl = {1148.46010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6} }
Bentuo Zheng. On operators from separable reflexive spaces with asymptotic structure. Studia Mathematica, Tome 187 (2008) pp. 87-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm185-1-6/