We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both ℓ₁ and . It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c₀ is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1,
author = {H. Carri\'on and P. Galindo and M. L. Louren\c co},
title = {A stronger Dunford-Pettis property},
journal = {Studia Mathematica},
volume = {187},
year = {2008},
pages = {205-216},
zbl = {1149.46009},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1}
}
H. Carrión; P. Galindo; M. L. Lourenço. A stronger Dunford-Pettis property. Studia Mathematica, Tome 187 (2008) pp. 205-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1/