We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both ℓ₁ and . It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c₀ is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1, author = {H. Carri\'on and P. Galindo and M. L. Louren\c co}, title = {A stronger Dunford-Pettis property}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {205-216}, zbl = {1149.46009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1} }
H. Carrión; P. Galindo; M. L. Lourenço. A stronger Dunford-Pettis property. Studia Mathematica, Tome 187 (2008) pp. 205-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-3-1/