Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7, author = {Heydar Radjavi and Peter \v Semrl}, title = {Linear maps preserving quasi-commutativity}, journal = {Studia Mathematica}, volume = {187}, year = {2008}, pages = {191-204}, zbl = {1183.15028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7} }
Heydar Radjavi; Peter Šemrl. Linear maps preserving quasi-commutativity. Studia Mathematica, Tome 187 (2008) pp. 191-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7/