Linear maps preserving quasi-commutativity
Heydar Radjavi ; Peter Šemrl
Studia Mathematica, Tome 187 (2008), p. 191-204 / Harvested from The Polish Digital Mathematics Library

Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284559
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7,
     author = {Heydar Radjavi and Peter \v Semrl},
     title = {Linear maps preserving quasi-commutativity},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {191-204},
     zbl = {1183.15028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7}
}
Heydar Radjavi; Peter Šemrl. Linear maps preserving quasi-commutativity. Studia Mathematica, Tome 187 (2008) pp. 191-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-7/