Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces
Shangquan Bu ; Yi Fang
Studia Mathematica, Tome 187 (2008), p. 103-119 / Harvested from The Polish Digital Mathematics Library

We study the maximal regularity on different function spaces of the second order integro-differential equations with infinite delay (P)u''(t)+αu'(t)+d/dt(-tb(t-s)u(s)ds)=Au(t)--ta(t-s)Au(s)ds+f(t) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), u’(0) = u’(2π), where A is a closed operator in a Banach space X, α ∈ ℂ, and a,b ∈ L¹(ℝ₊). We use Fourier multipliers to characterize maximal regularity for (P). Using known results on Fourier multipliers, we find suitable conditions on the kernels a and b under which necessary and sufficient conditions are given for the problem (P) to have maximal regularity on Lp(,X), periodic Besov spaces Bp,qs(,X) and periodic Triebel-Lizorkin spaces Fp,qs(,X)

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:286397
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-1,
     author = {Shangquan Bu and Yi Fang},
     title = {Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces},
     journal = {Studia Mathematica},
     volume = {187},
     year = {2008},
     pages = {103-119},
     zbl = {1140.45015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-1}
}
Shangquan Bu; Yi Fang. Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Mathematica, Tome 187 (2008) pp. 103-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm184-2-1/